Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Bollard Energy Dissipation in Moving Barrier and Passenger Vehicle Impacts

2015-04-14
2015-01-1424
Bollard systems are often used to separate errant vehicular travel from pedestrian and bicycle traffic. Various bollard systems are available for this function, including different installations, functional design, and protection levels. The security-type bollards are used primarily at high-security locations (e.g., military bases and other government installations) around the world. While a protocol exists for testing and rating security bollards, no such protocol or recommended practice or standard currently exists for non-security-type bollards. Non-security, concrete-filled bollards are commonly used by cities/states, local government organizations, and the private sector as “perceived impediments to access” to protect against slow-moving vehicles. There is a general lack of publically available test data to evaluate these non-security bollards and conventional installation procedures.
Journal Article

A Novel Methodology for the Definition of an Optimized Immersion Cooling Fluid by Means of a Lumped Electro-Thermal Battery Pack Model

2023-04-11
2023-01-0507
This article proposes a novel methodology for the definition of an optimized immersion cooling fluid for lithium-ion battery applications aimed to minimize maximum temperature and temperature gradient during most critical battery operations. The battery electric behavior is predicted by a first order equivalent circuit model, whose parameters are experimentally determined. Thermal behavior is described by a nodal network, assigning to each node thermal characteristics. Hence, the electro-thermal model of a battery is coupled with a thermal management model of an immersion cooling circuit developed in MATLAB/Simulink. A first characterization of the physical properties of an optimal dielectric liquid is obtained by means of a design of experiment. The optimal values of density, thermal conductivity, kinematic viscosity, and specific heat are defined to minimize the maximum temperature and temperature gradient during a complete discharge of the battery at 2.5C.
Technical Paper

Understanding the Challenges Associated with Soot-in-Oil from Diesel Engines: A Review Paper

2021-04-06
2021-01-0568
The major drivers in the development of the latest generation of engines are environmental. For diesel engines, mitigating the effects of soot contamination remains a significant factor in meeting these challenges. There is general consensus of soot impacting oil performance. Considerable efforts have been made towards a greater understanding of soot-lubricant interaction and its effects on engine performance. However, with evolution of engine designs resulting in changes to soot composition/ properties, the mechanisms of soot-lubricant interaction in the internal combustion engine continue to evolve. A variety of mechanisms have been proposed to explain soot-induced wear in engine components. Furthermore, wear is not the only topic among researchers. Studies have shown that soot contributes to oil degradation by increasing its viscosity leading to pumpability and lubricant breakdown issues.
Technical Paper

Low Heat Capacitance Thermal Barrier Coatings for Internal Combustion Engines

2019-04-02
2019-01-0228
A new generation of low heat capacitance Thermal Barrier Coatings (TBCs) has been developed under U.S. Dept. of Energy / Advanced Research Projects Agency - Energy (ARPA-E) sponsored research. The TBCs developed under this project have significantly lower thermal conductivity of < 0.35 W/m-K, thermal heat capacitance of < 500 kJ/m3-K, and density of <0.35 g/cm3. Two different binder types were used for thermal barrier coatings applied by High Velocity Low Pressure (HVLP) spraying to the piston, cylinder head, and valve combustion surfaces of a small natural gas engine. The effects of thermal barrier coatings on engine efficiency and knock characteristics were studied in a small, high compression ratio, spark-ignition, internal combustion engine operating on methane number fuels from 60 to 100. The new TBCs with low thermal conductivity and low thermal heat capacities have been shown to increase overall engine efficiency through reduced heat transfer to the piston and cylinder head.
Technical Paper

Experimental Investigation on Indirect Heat Pump System Performance using R290 Refrigerant for Automotive Application

2024-04-09
2024-01-2877
A ban on Per- and Polyfluorinated Substances (PFAS) has enforced automobile companies to find alternatives to current R1234yf refrigerant. One such natural substitute, R290 (propane), is becoming popular with automotive manufacturers and suppliers due to its high performance and efficiency. However, due to its high flammability, R290 is not allowed in the cabin evaporator/condenser in order to ensure the safety of the driver and passenger. This requires the design of a novel indirect Heat Flux Management System (HFMS) with coolant as a working fluid to transfer heating to cabin and powertrain cooling components. The design of the heat pump system confines flammable R290 refrigerant to a hermitic compact box to avoid leakages. This paper aims to investigate the performance and efficiency of a new R290 refrigerant-based indirect heat pump system. The system is tested on a test bench, and the results are compared to an indirect heat pump system with R1234yf refrigerant.
X